

The power to move

Operating instructions Compleo SOLO N 40800705

Article number: A06AA1

Issue: 2023_06 Revision: 04

1	Α	bout this manual	5
	1.1	Scope of application	6
	1.2	Further requirements	6
	1.3	Manufacturer and contact address	7
	1.4	Conventions of presentation	7
	1.5	Abbreviations	8
2	Sa	afety	9
	2.1	Warnings	9
	2.	1.1 Sectional warnings	9
	2.2	Intended use	10
	2.3	Foreseeable misuse	10
	2.4	Safety instructions for the user	10
	2.5	Personnel qualification	11
	2.6	Dangers and residual risks	12
	2.	6.1 Electrical voltage	12
	2.	6.2 Incorrect handling	12
3	Ρ	roduct description	13
	3.1	Design	13
	3.2	Series label	15
	3.3	Technical specifications	16
4	Т	ransport, packaging and storage	19
	4.1	Transport Inspection	19
	4.2	Storage conditions	20
5	In	stallation	21
	5.1	Installation work	21
	5.2	Notes on mechanical installation	21
	5.3	Notes on electrical installation	23
	5.4	Unpacking the charging system	25
	5.5	Location	26
	5.6	Mounting on pillar with SMC base	27
	5.	6.1 Installing the SMC base	28
	5.	6.2 Installing the pillar	29
	5.7	Installation on pillar with asphalt or concrete base mounting	
	5.	7.1 Inserting the ground anchorage	31
	5.	7.2 Installing the pillar	33
	5.8	Mounting the terminal box (single-sided pillar)	34

👉 COMPLEO

About this manual

	5.9 Mounting the terminal box (double-sided pillar)	
	5.10 Installation and connection	
	5.10.1 Wall mounting	
	5.10.2 External supply line	
	5.10.3 Data line	
	5.10.4 Ripple control line	
	5.10.5 Strain relief	
	5.10.6 Mounting the bottom shell	41
	5.10.7 Connecting the internal supply line	42
	5.10.8 Connecting the Ethernet cable	43
	5.10.9 Connecting the radio ripple control receiver	44
	5.10.10 Inserting SIM card (optional)	
	5.10.11 Putting on the housing cover	45
	5.10.12Attaching the optional safety lock	
	5.10.13Safety sign	
6	Commissioning	
	6.1 Testing the charging system	48
	6.2 System start-up	48
	6.3 Configuration of the charging system with Compleo DUCTO	
	6.3.1 Creating a network connection	
	6.3.2 Calling up the configuration interface	
	6.4 DUCTO Guide	
7	Operation	50
	7.1 Charging process	51
	7.2 Charging the vehicle	52
	7.2.1 Authorisation	52
	7.2.2 Charging process with type 2 socket	52
	7.2.3 Charging process with type 2 plug	52
	7.3 Ending the charging process	53
	7.3.1 Authorisation	53
	7.3.2 Ending charging with type 2 socket	
	7.3.3 Ending charging with type 2 plug	54
	7.4 Operating Signals and Displays	55
_		

👉 COMPLEO

About this manual			
	7.	4.1 Charging state display	55
	7.	4.2 Acoustic signals	
8	Μ	lalfunctions	57
	8.1	Residual current circuit breaker (RCCB)	57
	8.2	Circuit breaker (MCB)	57
9	Ε	rror display and measures	58
	9.1	About this advices	
	9.	.1.1 Field of application	58
	9.2	OCPP 1.6	58
	9.3	Compleo-specific	60
10	M	laintenance	64
	10.1	Maintenance plan	65
	10	D.1.1 Automatic RCD test	65
	10.2	Maintenance and repair	66
	10.3	Cleaning	67
11	D	ecommissioning, dismantling and disposal	68

Commissioning and test report for AC charging systems73

11.1

13.1

13.2

12

13

1 About this manual

This manual contains descriptions and important information for the safe and trouble-free use of the charging system. The manual is part of the charging system and must be accessible at all times to all persons working on and with the charging system. The manual must be kept in a clearly legible condition.

The personnel must have carefully read and understood this manual before starting any work. The basic prerequisite for safe working is the observance of all specified safety and warning instructions as well as handling instructions in this manual.

In addition to the instructions in this manual, the local accident prevention regulations and the national industrial safety regulations apply.

Illustrations are for basic understanding and may differ from the actual design of the charging system.

More information about the product: https//www.compleo-cs.com/service/installation-service.

1.1 Scope of application

This manual is valid for the following article numbers of the charging system Compleo SOLO N:

neoom international	Compleo Charging Solutions	Ausstattung
40800705	i00019538	A06AA11003.22

1.2 Further requirements

The operator must ensure that the charging system is properly installed and used as intended.

During installation and start-up, the national legal requirements and regulations for accident prevention must be observed. In Germany these include the requirements according to DIN VDE 0100 and the accident prevention regulations according to DGUV V3.

Before the system is released, an appropriate test must be carried out to ensure all safety features and the proper functionality of the charging system. In addition, the operator must ensure the operational safety of the charging system by means of regular maintenance (see chapter 10.1 Maintenance plan, page 65).

This document reflects the state-of-the-art of the product at the time of publication.

ATTENTION

A list of the normative references and regulations according to which the charging system was designed and constructed can be found in the declaration of conformity. When installing and commissioning a charging system from Compleo Charging Solutions, nationally applicable standards and regulations must also be observed.

NOTE

All standards, regulations, test intervals and the like mentioned in this document are valid in Germany. If a charging system is set up in another country, equivalent documents with a national reference must be used.

1.3 Manufacturer and contact address

Compleo Charging Solutions AG Oberste-Wilms-Straße 15a 44309 Dortmund, Germany

Tel.: +49 231 534 923 - 777 Fax: +49 231 534 923 - 790 e-mail address: info@compleo-cs.com

1.4 Conventions of presentation

For easy and quick understanding, different information in this manual is presented or highlighted as follows:

- List without fixed order
- List (next item)
 - Subitem
 - Subitem
- 1. Handling instruction (step) 1
- 2. Handling instruction (step) 2
 - Additional notes for the previous step
- 1 Position number in figures and legends
- 2 Consecutive position number
- 3 ...
- ☑ List/check point
- ☑ List/next check point

Reference (example): See "chapter 6.5, page 27"

NOTE

A note contains application tips and useful information, but no warnings of hazards.

1.5 Abbreviations

Abbreviation	Explanation
AC	Alternating Current
DC	Direct Current
EMC	Electromagnetic Compatibility
EVSEID	Electric Vehicle Supply Equipment ID
нмі	Human-Machine Interface
ID	Identification Number
IR	Infrared
kWh	Kilowatt hour
LCD	Liquid Crystal Display
LS	Charging system/charging station
МСВ	Miniature Circuit Breaker
MessEG	Measuring and calibration law
MessEV	Measuring and calibration regulations
N/A	Not Available/Applicable
OCPP	Open Charge Point Protocol
PSU	Power Supply Unit
RCD	Residual Current Device
RDC-DD	Residual Direct Current-Detecting Device
RTC	Real-Time Clock
S/N	Serial number
SAM	Memory and display module
SPD	Surge Protective Devices
SW	Software
UV	Sub-distribution
VNB	Distribution system operator

2 Safety

In order to ensure operational safety of the charging equipment and to avoid serious injuries caused by flashovers or short circuits, the following information and safety instructions for operating the unit must be observed. Repair work on the unit must only be carried out by authorised specialist personnel. The housing of the unit may only be opened by persons who have been properly instructed. The following points therefore apply:

- Read and observe safety and warning instructions
- Read and follow instructions

2.1 Warnings

In this manual, warnings and notes are presented as follows.

A DANGER

Indicates an imminent danger that will result in death or serious injury if not avoided. There is great danger to life.

WARNING

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury.

ATTENTION

Indicates a potentially hazardous situation which, if not avoided, may result in property damage.

2.1.1 Sectional warnings

Sectional warnings refer to entire chapters, a section or several paragraphs within this manual.

Sectional warnings are presented as follows (example warning):

A WARNING

Type and source of the danger.

Possible consequences if the danger is not observed.

• Measures to avoid the danger.

2.2 Intended use

The charging system is intended exclusively for charging electric vehicles.

The charging system is suitable for public and semi-public areas and can be used indoors and outdoors.

The charging system is intended exclusively for stationary installation.

Any use beyond this is considered improper use. The manufacturer is not liable for damages resulting from this.

2.3 Foreseeable misuse

The use of the charging system as a power source for other power consumers is not in accordance with its intended use and is considered misuse.

Only charging cables of type 2/20 A or only charging cables of type 2/32 A may be used on charging systems equipped with a charging socket type 2. Charging cables that deviate from this are not accepted by the systems.

Charging systems may only be connected to the power supply via a fixed and non-separable supply line.

2.4 Safety instructions for the user

This charging system may only be used in the manner described in this manual. If the charging system is used for other purposes, the operator may be endangered and the charging equipment may be damaged. This manual must always be accessible. Note the following points:

- If no charging process is active, anchor any existing charging cables on the charging system in the brackets provided or wrap them around the housing of the charging system.
- The distance between a charging system and a vehicle must not exceed 3 metres.
- The charging system may only be operated when completely closed. Do not remove covers inside the charging system.

2.5 Personnel qualification

Qualified and trained electricians meet the following requirements:

- Knowledge of general and special safety and accident prevention regulations.
- Knowledge of the relevant electrical engineering regulations.
- Product-specific knowledge through appropriate training.
- Ability to identify hazards associated with electricity.

A DANGER

Danger due to electric current

Touching live parts will result in electric shock with serious injury or death.

- Work on electrical components may only be carried out by a qualified electrician and in accordance with electrical engineering rules.
- Ensure they are de-energised and take suitable protective measures.

2.6 Dangers and residual risks

NOTE

Compleo charging systems as a whole do not contain SVHCs (Substances of Very High Concern) in a concentration of more than 0.1 % (w/w), related to the individual charging station. However, individual components may contain SVHCs in concentrations > 0.1 % (w/w).

• When the charging stations are used as intended, no SVHCs are released and there are no risks to humans or the environment.

2.6.1 Electrical voltage

Dangerous electrical voltages may be present inside the housing of the charging system after the housing has been opened. There is a danger to life if contact is made with live components. Serious injury or death is the result.

- Work on electrical equipment may only be carried out by a qualified electrician and in accordance with electrical engineering rules.
- Disconnect the charging system from the power supply.
- The system has life-threatening DC voltages, which only disappear after five minutes after switching off due to capacitor charges. A corresponding period of five minutes must elapse before working on exposed parts.

2.6.2 Incorrect handling

- Pulling on the charging cable can lead to cable breakage and damage. Only pull the charging cable out of the socket directly at the plug.
- The use of extension cables is not permitted. To avoid the risk of electric shock or cable fire, only one charging cable may be used at a time to connect the electric vehicle and charging system.
- A charging system whose charging cables are in contact with the ground involves a risk of tripping or mechanical damage if run over. The operator of the charging system must implement appropriate measures for cable routing and affix appropriate warnings.

A WARNING

Risk of electric shock and fire due to the use of adapters!

Using adapters on the charging cable can cause serious injury and damage to property.

• Do not use any adapters on the charging cable!

3 Product description

The Compleo SOLO N charging system described below is suitable for charging electric vehicles indoors and outdoors with installation on a load-bearing wall or a pole.

Instructions, states and messages are indicated by means of status LEDs and/or displays.

3.1 Design

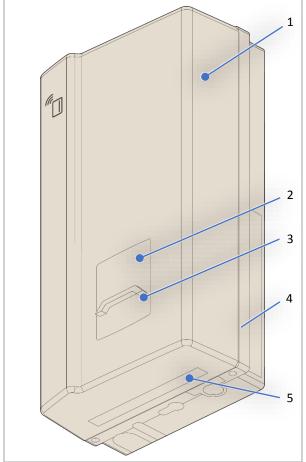


Fig. 1: Compleo SOLO

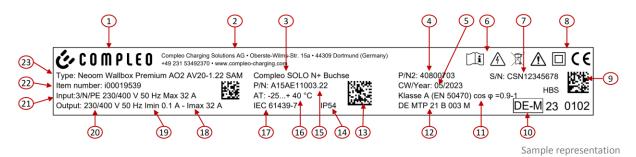
- (1) Housing
- (2) Charging interface, socket type 2, or parking position for charging plug type 2
- (3) Status display of the charging interfaces
- (4) Series label
- (5) Near-field lighting (optional)

The illustration shows a charging system of type Compleo SOLO N with AO2 socket or fixed charging cable and charging plug type 2. The equipment features are listed in the table below.

The scope of delivery is shown in chapter 4 Transport, packaging and storage, page 19.

A complete overview of the technical data is listed in chapter 3.3 Technical specifications, page 16.

Product description



		 Charging interfaces HC2 (fixed charging cable with charging plug type 2)
H	C2	or
		AO2 (socket type 2 with sliding cover)
A	02	
RGB		Status display ∙ Status LED
3-co	blour	
		 Documentation - Operating instructions incl. associated documents
Sec.		Installation accessories Fastening set Installation material

3.2 Series label

There is a serial label on the charging system. The following figure shows the arrangement of information on a serial label:

The following information can be identified by means of the serial label:

- (1) Name of the unit manufacturer
- (2) Address, service number, website of the unit manufacturer
- (3) System designation of the system manufacturer
- (4) Material number or article number of the system
- (5) Calendar week and year of manufacture
- (6) Pictograms (manual, disposal)
- (7) Serial number of the charging system
- (8) Pictograms (safety information, protection class)
- (9) QR code: Serial number of the charging system
- (10) Metrology marking (year, conformity assessment body)
- (11) Accuracy class of the measuring device according to EN 50470 and cos phi: permissible power factor
- (12) Number of the type examination certificate
- (13) QR code: Article number of the unit manufacturer
- (14) Protection type and protection class of the charging system
- (15) Equipment features of the unit manufacturer
- (16) Permitted ambient temperature
- (17) Manufacturing standard
- (18) Imin: Minimum current of the charging station
- (19) Imax: Maximum current of the charging station
- (20) Output: Voltage, frequency, max. current, power
- (21) Input: Connections, voltage, frequency, max. input current
- (22) Article number of the unit
- (23) Unit designation of the unit operator

3.3 Technical specifications

General information

Charging system	Compleo SOLO N
Article number	40800705
Equipment (version abbreviation)	A06AA1xxxxx.xx
Charging standard	Mode 3/ IEC 61851

Connections

Mains connection	Terminals
Max. connection cross- section ¹⁾	rigid: 10 mm²; flexible: 6 mm² (with and without ferrule)
Max. equipotential bonding ^{6),1)}	16 mm²
Ethernet	LSA terminals/ RJ45 socket
Min. connection cross-section	26 AWG (LSA terminals)
Max. length	30 m
Ripple control receiver	Contacts for mains-supporting load control (not potential-free/not galvanically isolated)
Max. connection cross-section	1.5 mm²
Max. length	30 m

Electrical characteristics

Mains voltage	230 V/ 400 V
Max. rated current	32 A
Mains frequency	50 Hz
Network form	TT/ TN
Protection class	II
Overvoltage category	III

Charging voltage	400 V/ 3~
Max. charging capacity	22 kW
Charging current	32 A/ 3~
Charging interface(s)	1 x type 2 charging socket

Protective devices

MCB ²⁾	C40 A ³⁾
RCD	RCCB: 40 A/0,03 A, type A; RDC-DD: 6 mA
SPD	N/A ⁵⁾

Ambient conditions

Ambient temperature	-25 °C to +40 °C
Operating temperature (Ø 24 h)	≤ 35 °C
Storage temperature	-25 °C to +50 °C
Relative humidity	≤ 95 % (non-condensing)
Altitude	≤ 2000 m above sea level

Mechanical data

Dimensions (H x W x D)	455 x 252 x 113 mm	
Housing	screwed; polycarbonate (PC); IK 08; DIN EN 61439-(17)	
Protection type	IP54	
Max. weight	7.0 kg	

Communication interfaces

CP/IP

Product description

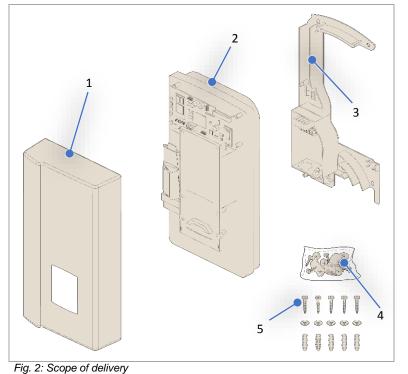
Legal regulations

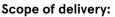
2014/35/EU (Low Voltage Directive)				
2014/30/EU (EMV Directive)				
2011/65/EU (RoHS Directive)				
2001/95/EG (Directive on General Product Safety)				
2012/19/EU (WEEE Directive)				
(EU) 2019/1021 (EU-POP Ordinance)				
(EU) 1907/2006 (REACH Regulation)				
SVHC	EU no.	CAS no.		
Lead (Pb)	231-100-4	7439-92-1		
4,4'-isopropylidenediphenol (bisphenol A; BPA)	201-245-8	80-05-7		

1) = Use copper cable only

- 2) = Circuit breaker must be located in the sub-distribution upstream of the charging system
- 3) = according to IEC 60898-1, IEC 60947-2 or IEC 61009-1 (deviations possible due to country-specific regulations)
- 4) = Residual current circuit breaker must be upstream of the charging system
- 5) = Surge protection must be provided upstream of the charging system, if required
- 6) = Only when equipped with surge protection device type 1/2/3 DIN EN 61643-11

4 Transport, packaging and storage


4.1 Transport Inspection


Depending on the type and product scope of the charging system, it is delivered either upright or horizontally in appropriate transport and protective packaging. Depending on the type of charging system, air-cushioned protective films and/or cardboard boxes are used. The materials can also be used as underlay during subsequent assembly.

- 1. After unpacking, thoroughly inspect the charging system for transport damage.
- 2. Compare the serial number of the charging system with that of the delivery documents to exclude faulty deliveries.
- 3. Check delivery according to purchase and scope of delivery for completeness.
- 4. Proceed as follows in case of deviations or recognisable damages:
 - Do not accept delivery or only accept it conditionally.
 - Complaints must be reported immediately to the manufacturer in writing.

NOTE

We recommend to keep and reuse the original packaging for further transportation. Otherwise, the packaging material must be disposed of in accordance with the applicable local regulations.

- (1) Housing cover
- (2) Connection box
- (3) Bottom shell
- (4) Fixing material for wall mounting
- (5) Fixing material for bottom shell and housing cover

4.2 Storage conditions

The system should be stored in the same position that it was transported in. If this is not possible for undetermined reasons, it should be stored in the installation position of the charging system.

- Ambient temperature for storage: -25 °C to +50 °C
- Permissible relative humidity: maximum 95 % (non-condensing)
- For intermediate storage, store the charging system in the original packaging

5 Installation

5.1 Installation work

The assembly and installation work requires specific technical qualifications and expertise. There is a danger to life for persons who carry out work for which they have neither been qualified nor instructed. The work may only be carried out by persons who are familiar with it, have been informed about dangers and have the necessary qualifications.

Observe the national legal requirements and regulations during assembly and installation.

ATTENTION

Damage to the unit

Environmental influences due to rain, splash water or heavy dust exposure on exposed installation components without an installation cover cause damage to the unit.

• Do not leave the charging station unattended with the installation cover open.

5.2 Notes on mechanical installation

A WARNING

Incorrect installation and start-up

Improper performance of work can lead to serious injuries and damage to property.

- Work may only be carried out by trained specialist personnel.
- Meet all safety requirements before installation.
- Only carry out mechanical installation in a de-energized state.
- Provide sufficient free space for the installation.
 The installation site must be sufficiently accessible so that the charging system can be installed and serviced without interference.
- Use a suitable material and tool for installation.

The following description of installation with specific installation material is exemplary. Local conditions are not dealt with in detail.

NOTE

The necessary installation material for wall mounting is included in the delivery.

Installation

ATTENTION

Danger from falling charging system

If the charging system is installed on a wall structure that does not have sufficient load-bearing capacity, the fastening may tear out and cause the charging system to fall down. Damage to the charging system can be the result.

- Ensure that the wall construction has sufficient load-bearing capacity.
- Do not pull the spiral charging cable beyond its maximum extension.
- Do not place any objects on the installed charging system.

5.3 Notes on electrical installation

A DANGER

Danger due to electric current

Touching live parts will result in electric shock with serious injury or death.

- Work on electrical components may only be carried out by a qualified electrician and in accordance with electrical engineering rules.
- Ensure they are de-energised and take suitable protective measures.
- For safe disconnection during installation work, disconnect the charging system from the power supply.
 - Switch off the circuit breaker or main switch.

Observe the national legal requirements and regulations during electrical installation. In Germany, these include the following safety requirements:

- DIN VDE 0100-100
- DGUV Regulation 1
- DGUV Regulation 3+4
- TRBS 1201

_

NOTE

The protection technology required for the charging point (MCB) is not installed within the charging system.

- Suitable protection technology must be installed in the upstream sub-distribution.
- The MCB must be selected with a type C tripping characteristic.
- See chapter 3.3 Technical specifications, page 16.

NOTE

The residual current circuit breaker (RCCB) required for the charging point is not installed within the charging system.

- Suitable protection technology must be installed in the upstream sub-distribution.
- The RCCB must comply with the characteristic 40 A/0.03 A, type A.
- See chapter 3.3 Technical specifications, page 16.

Installation

ATTENTION

Unit fault

Installing an additional RCCB protection device can cause irritation during the automatic self-test for charging systems with built-in RCCB.

Faults and unit failure can be the result.

• If an additional RCCB is required due to installation conditions, the additional RCCB must be selective to the built-in RCCB.

NOTE

The surge protection (SPD) required for the charging point is not installed within the charging system.

- Suitable protection technology must be installed in the upstream sub-distribution.
- See chapter 3.3 Technical specifications, page 16.

5.4 Unpacking the charging system

Tool

TORX-TR20 bit

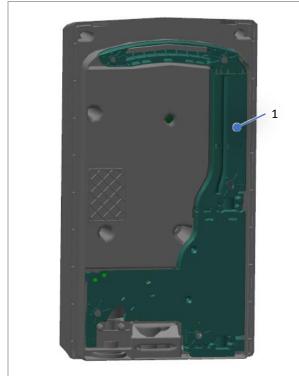


Fig. 3: SOLO rear side

- 1. Open the packaging and remove the accessory kit.
- 2. Remove the charging system from the packaging and place it face down on the moulded fibre insert (egg carton) to protect it from scratches.
- 3. Remove the adhesive safety strip between the connection box and the bottom shell.
- 4. Lift the terminal box (1) at the bottom, disengage and remove.
- 5. Turn the charging system onto its rear and put it down.

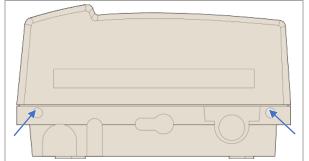


Fig. 4: Housing cover locking screws

See also chapter 4.1 Transport Inspection, page 19.

- 6. Loosen and remove 2 TORX screws on the underside of the housing cover with TORX-TR20 bit.
- Grasp the housing cover at the lower end, push it slightly to the upper end, lift it off and remove it.
- 8. Carefully remove all components and accessories; sort and place them as required.

Installation

5.5 Location

For professional installation, safe operation and barrier-free access to the charging system, the following points must be observed when selecting the location.

- National or local regulations.
- Do **not** install the charging system in the hazard areas of:
 - Flammable, combustible and explosive materials
 - Running or jet water
- Do **not** install the charging system in the following areas:
 - Areas that are potentially explosive (e.g. gas filling stations)
 - Areas where backwater or storm water is to be expected
 - Areas where flooding is to be expected
 - Areas where heat domes or heat accumulation can occur
- The substrate must have sufficient strength and load-bearing capacity to withstand the mechanical loads.
- Provide sufficient space to maintain the minimum distances:
 - Approx. 120 cm between two charging systems
- Ensure a sufficient fresh air supply for cooling the charging system and heat dissipation.
- Observe ambient conditions, see also chapter 3.3 Technical specifications, page 16.

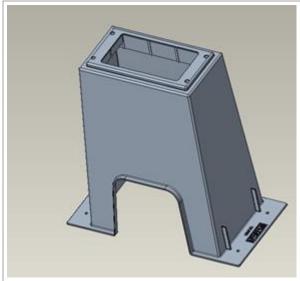
ATTENTION

Damage to the unit

Vehicles unintentionally running into the unit can cause damage.

- Select the installation site in such a way that damage due to vehicles unintentionally running into the unit is prevented.
- If damage cannot be ruled out, suitable protective measures must be taken.

5.6 Mounting on pillar with SMC base


ΝΟΤΕ

The pillar for the compleo Solo charging system is available either with 1 mounting plate (single-sided pillar) or with 2 mounting plates (double-sided pillar).

Due to the design similarities of the base plate and the standpipe, only the one-sided pillar is used in the illustration of the following installation instructions. All assembly steps for installation are also applicable for the double-sided pillar.

Installation sequence

- 1. Select a suitable installation site.
- 2. Check ground for stability.
- 3. Check parts and installation material for completeness.
- 4. Excavation of the installation pit.
- 5. Lay the supply lines¹.
- 6. Compact and level the ground of the excavation pit.
- 7. Place and align the SMC base.
- 8. Feed the supply lines through the centre of the base.
- 9. Fix the base by filling.
- 10. Feed the supply line through the pillar.
- 11. Place the pillar on the base and screw it down.
- 12. Fasten the charging system with installation material.
- 13. Prepare electrical installation.

The SMS base is installed exclusively in soil with sufficient load-bearing capacity and soil condition.

In case of doubt, a qualified civil engineering company must prepare the ground and carry out the installation.

The charging system is then mounted using the fixing material included in the scope of delivery and finally installed.

The exact dimensions and weights of the charging system and the pillar can be found in the corresponding documents in chapter 13 Annexes, page 72.

Fig. 5: Pillar on SMC base

1) = The design and number of supply lines depends on the number and equipment of the compleo Solo charging system to be installed. See chapter 3.3 Technical specifications, page 16.

5.6.1 Installing the SMC base

Installation requirements

- Ground condition with sufficient load-bearing capacity
- At least 600 mm free space around the charging system for heat dissipation
- Horizontal alignment of the supporting surface
- Base filling material (not in scope of delivery)

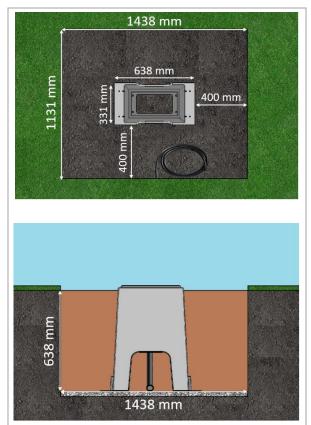
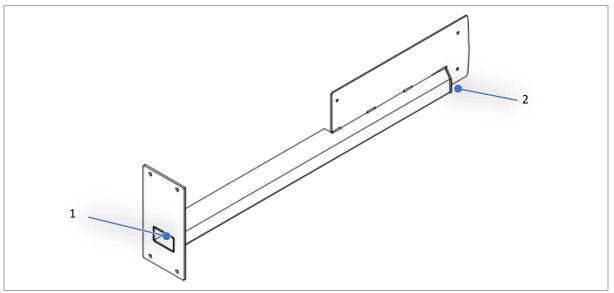
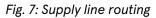


Fig. 6: Excavation pit


Carrying out installation


- 1. Dig the excavation pit with the following dimensions:
 - Width: approx. 1150 mm
 - Length: approx. 1450 mm
 - Depth: approx. 640 mm
- If necessary (depending on soil conditions or special local conditions), pour a flat concrete surface. Deepen the excavation pit accordingly.
- 3. Place the SMC base in the centre of the excavation pit.
- Feed the supply lines through the soil to the excavation pit and lead them through the side recess in sufficient length (approx. 1800 mm) centrally in the base upwards out of the pit.
- 5. Align the height of the SMC base in the excavation pit so that the top edge of the base protrudes approx. 20 mm above the top edge of the ground (ground level).
- 6. Align the upper mounting surface of the SMC base horizontally in all directions.
- 7. Fix the outer sides of the SMC base by filling with excavated earth, check for dimensional accuracy and fill the excavation pit to 300 mm below ground level. Leave the centre of the base free!
- 8. If necessary, place a lateral lean concrete layer 150 mm high around the base for fixation before filling.
- 9. Compact the excavated earth every 200 mm in height.
- 10. Fill the outer sides and the centre of the base with base filling material up to ground level.

5.6.2 Installing the pillar

Installation material and tools

- 4 screws (M10 x 90, V4A) (accessory kit)
- 4 large diameter washers (DIN 9021 10.5 mm, V2A) (accessory kit)
- Open-end or ring wrench SW 17
- Torque wrench

Carrying out installation

- 1. Lay the pillar flat on the ground as close as possible to the installation location.
- 2. Guide prepared supply lines through the ground opening (1) of the base into the pillar and push them through the standpipe (2) to the upper opening.
- 3. Pull the supply lines out of the upper opening as far as necessary.

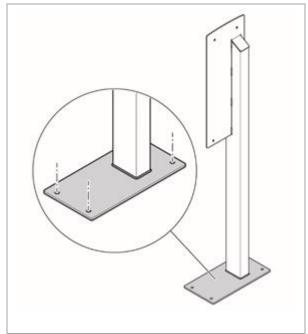
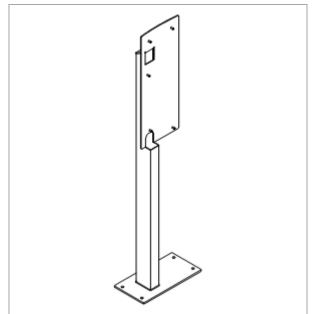


Fig. 8: Screw connection

- Erect the pillar and place it on the prepared SMC base. While doing so, carefully pull the supply lines further out of the upper opening to avoid looping.
- Align the pillar so that the fixing holes are aligned with the mounting points of the SMC base. Check that no supply lines are crushed!
- Place washers over the mounting holes of the pillar, insert the screws through and hand-tighten them in the threaded bushings of the SMC base.
- Check the connection and the pillar for correct fit and tighten the screws crosswise. Observe the corresponding tightening torques!

5.7 Installation on pillar with asphalt or concrete base mounting


NOTE

The pillar for the compleo Solo charging system is available either with 1 mounting plate (single-sided pillar) or with 2 mounting plates (double-sided pillar).

Due to the design similarities of the base plate and the standpipe, only the one-sided pillar is used in the illustration of the following installation instructions. All assembly steps for installation are also applicable for the double-sided pillar.

Installation sequence

- 1. Select a suitable installation site.
- 2. Check ground for stability.
- 3. Check parts and installation material for completeness.
- 4. Lay the supply lines¹⁾.
- 5. Measure and drill fixing holes on the ground.
- 6. Insert ground anchorage.
- 7. Feed the supply line through the pillar.
- 8. Place the pillar on the ground anchoring and screw it down.
- 9. Fasten the charging system with installation material.
- 10. Prepare electrical installation.

The pillar is installed exclusively on level ground with sufficient load-bearing capacity and condition.

In case of doubt, a qualified civil engineering company must prepare the ground and carry out the installation.

The charging system is then mounted using the fixing material included in the scope of delivery and finally installed.

The exact dimensions and weights of the charging system and the pillar can be found in the corresponding documents in chapter 13 Annexes, page 72.

Fig. 9: Pillar with ground mounting

1) = The design and number of supply lines depends on the number and equipment of the compleo Solo charging system to be installed. See chapter 3.3 Technical specifications, page 16.

5.7.1 Inserting the ground anchorage

NOTE

The design of the ground anchorage must be adapted to the subsoil condition and/or special local conditions.

The following description of the assembly is therefore only exemplary. Local conditions are not dealt with in detail. Deviating procedures may only be initiated by competent persons.

Installation requirements

- · Ground condition with sufficient load-bearing capacity and evenness.
- At least 600 mm free space around the charging system for heat dissipation.
- Laid supply line

Installation material and tools

- Depending on ground conditions, 4 suitable ground anchors (e.g. expansion or injection anchors) with threaded bolt M10 or internal thread M10 (not in scope of delivery)
 - Suitable drilling tool

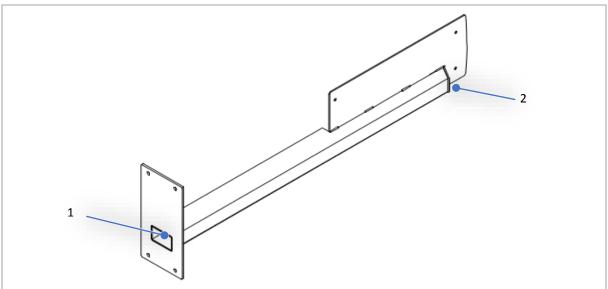


Fig. 10: Supply line routing

Carrying out installation

- 1. Lay the pillar flat on the ground as close as possible to the installation location.
- 2. Guide prepared supply lines through the ground opening (1) of the base into the pillar and push them through the standpipe (2) to the upper opening.
- 3. Pull the supply lines out of the upper opening as far as necessary.

Installation

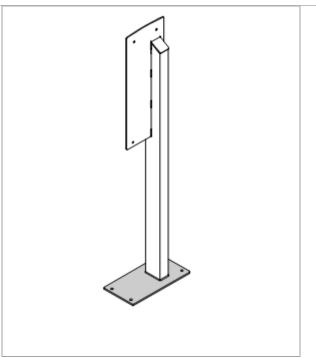


Fig. 11: Boreholes

- Erect the pillar and place it on the selected location. While doing so, carefully pull the supply lines further out of the upper opening to avoid looping.
- 5. Align the pillar at the selected position. Check that no supply lines are crushed!
- 6. Mark the hole pattern of the pillar base on the ground.
- Move the pillar to the side so that the markings on the ground are accessible. Check that the supply lines are not twisted or strained.
- 8. Drill holes on the markings using a suitable drilling tool.
 - Drill hole diameter: according to the manufacturer's specification of the ground anchor
 - Drill hole depth: according to the manufacturer's specification of the ground anchor
- Insert ground anchor according to manufacturer's instructions. Allow injection mortar to harden if used.

5.7.2 Installing the pillar

Installation material and tools

- Atching screw connection to selected ground anchorage
- 4 large diameter washers (DIN 9021 10.5 mm, V2A) (not in scope of delivery)
- Open-end or ring wrench SW 17
- Torque wrench

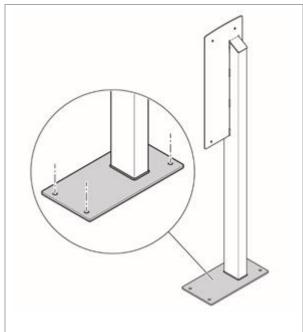
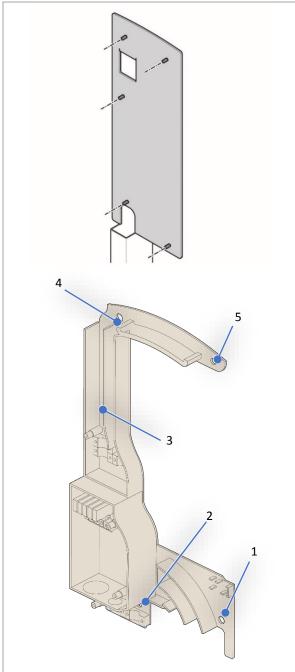


Fig. 12: Screw connection

Carrying out installation


- Place the pillar over the inserted ground anchors. While doing so, carefully pull the supply lines further out of the upper opening to avoid looping.
- 2. Align the pillar so that the fixing holes are aligned with the mounting points of the ground anchorage. Check that no supply lines are crushed!
- Place washers over the mounting holes of the pillar, insert the screw fasteners through and hand-tighten them.
- 4. Check the connection and the pillar for correct fit and tighten the screw connections crosswise. Observe the corresponding tightening torques!

5.8 Mounting the terminal box (single-sided pillar)

Installation material and tools

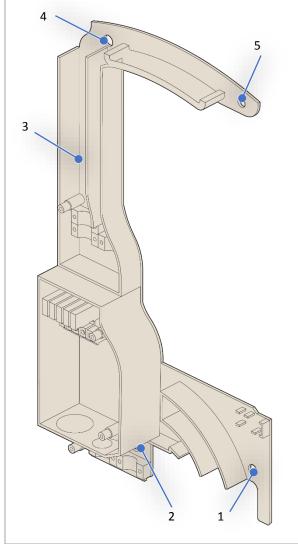
- 5 locking nuts (M8, V2A) (accessory kit)
- Wrench WAF 13
- Torque wrench

Carrying out installation

- 1. Push the terminal box onto the 5 threaded bolts of the pillar.
- 2. Screw nuts onto the threaded bolts and hand-tighten.
- Check the terminal box for correct seating and tighten the nuts in the sequence 3-4-2-1-5. Observe the corresponding tightening torques (M = 17 Nm)!
- 4. Break out and deburr the lower pre-punched bushings in the terminal box.

Fig. 13: Mounting holes

ΝΟΤΕ


The further steps for installation and connection of the charging system are described from the 5.10 Installation and connection, page 36chapter

5.9 Mounting the terminal box (double-sided pillar)

Installation material and tools

- 10 cylinder screws with hexagon socket (M8 x 60, V2A) (accessory kit)
- Hex wrench IS6
- Torque wrench

Carrying out installation

- Align the terminal box on the desired side of the pillar with the existing mounting holes of the fastening plate and fix it to the pillar with the cylinder screws.
- 2. Tighten the cylinder screws hand-tight.
- 3. Check the terminal box for correct seating and tighten the cylinder screws in the sequence 3--4--2--1--5. Observe the corresponding tightening torques (M = 17 Nm)!
- 4. Break out and deburr the lower prepunched bushings in the terminal box.

Fig. 14: Mounting holes

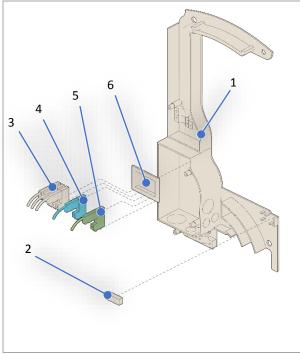
NOTE

The further steps for installation and connection of the charging system are described from the 5.10 Installation and connection, page 36chapter

5.10 Installation and connection

ATTENTION

Damage to the unit


Vehicles unintentionally running into the unit can cause damage.

- Select the installation site in such a way that damage due to vehicles unintentionally running into the unit is prevented.
- If damage cannot be ruled out, suitable protective measures must be taken.

5.10.1 Wall mounting

Installation requirements

- Wall with sufficient load-bearing capacity, e.g. masonry or concrete construction
- Smooth supporting surface on the wall
- At least 150 mm distance to the building ceiling
- At least 900 mm from the top of the ground or the soil.

- (1) Connection box
- (2) Spirit level
- (3) Through terminal outer conductor
- (4) Through terminal neutral conductor
- (5) Through terminal protective earth
- (6) Plastic top-hat rail clips

Fig. 15: Connection box

ATTENTION

Unit fault

An incorrect installation position can lead to malfunctions of the installed RCCB.

• -The charging system must be mounted in a vertical position.

The exact dimensions and weights of the charging system can be found in the corresponding documents in chapter 13.1 Housing dimensions, page 72.

Installation material and tools

•	Drill	•	Wrench WAF 10
•	Masonry drill Ø 8 mm	•	TORX-TR15 bit
•	5 wood screws (6 x 60, V2A) (accessory kit)	•	TORX-TR20 bit
•	5 large diameter washers (DIN 9021 10.5 mm, V2A) (accessory kit)	•	Torque wrench

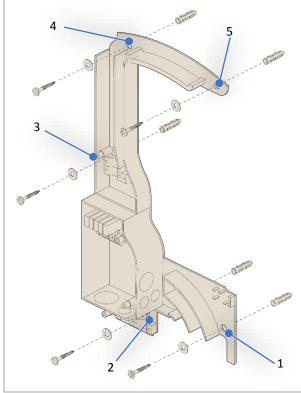


Fig. 16: Boreholes

Carrying out installation

- Place the connection box on the wall at the selected position and align it using the integrated spirit level.
- 2. Mark the boreholes (1 5).
- Drill boreholes with a depth of Ø 8 mm and 60 mm.
- 4. Insert Ø 8 mm hole plug.
- Mount the connection box on the wall with screws and large diameter washers.
 Observe the corresponding tightening torques.
- Depending on the cable routing from above or below, break out and deburr the pre-punched bushings in the connection box accordingly.

5.10.2 External supply line

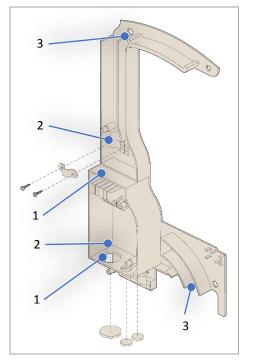


Fig. 17: Cable bushings

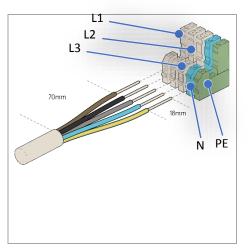


Fig. 18: Terminal block assignment

- Push the terminal block into the centre, disengage it from the side and - depending on the upper or lower installation type - turn it into the required position. Then re-engage and push to the end stop.
- 2. Break the pre-punched cable gland (1) out of the terminal box, deburr and insert the supplied membrane grommets. If the cable is routed from above, also break out and deburr the upper pre-punched tab (3).
- Guide the supply line of the required length through the grommet in the connection box and secure it with the supplied screws (4 x 25 mm; M = 1.5 Nm) and installed strain reliefs (2).

Cable routing from above: Select the cable length up to the lower edge of the connection box.

Cable routing from below: Select the cable length up to the middle of the connection box.

For flush-mounted cable routing (concealed wall connection), the wall outlet point must be approx. 2 - 3 cm below the side entry (3), depending on the cable used.

- Route the supply line up to the terminal block, cut to length and strip the sheath to a length of approx. 70 mm.
- The individual wires must be stripped 18 mm.
- Connect all conductors of the supply line to the external wiring side according to the adjacent illustration.
 - The conductor cross-section must be selected taking into account the maximum charging capacity and the length and type of routing of the power supply cable.
 - Conductor cross-section, rigid: max. 10 mm²
 - Conductor cross-section, flexible: max. 6 mm² (with and without ferrule)
- Ensure that the individual wires are connected correctly and the clamping screws (4 x 16 mm) are tightened firmly (M = 1.5 - 1.8 Nm).

4.

5.

6.

1- or 2-phase connection

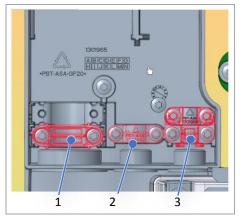
Depending on the local grid structure, the compleo solo charging system can also be operated with 1 or 2 phases. The maximum charging power is reduced analogously to the number of connected phases.

						11 kW system	22 kW system
1 phase	Phase L1	->	Terminal L1	=>	Max. charging power:	approx. 3.6 kW	approx. 7.2 kW
0	Phase L1	->	Terminal L1	l	Max. charging	7.0.104	
2 phase	Phase L2	->	Terminal L2	ſ	power:	approx. 7.2 kW	approx. 14.4 kW

5.10.3 Data line

- 1. Break the pre-punched cable gland out of the terminal box, deburr and insert the supplied membrane grommets.
- 2. Guide the data line in the required length (max. 30 m) through the bushing in the terminal box and secure it with the installed strain relief devices (M = 1.5 Nm).
 - Cable routing from above: Select the cable length up to the lower edge of the connection box + 15 mm.
 - Cable routing from below: Select the cable length up to the upper edge of the connection box.
 - In the case of flush-mounted cable routing (concealed wall connection), the wall outlet point must be 2 - 10 cm from the underside of the connection box.

5.10.4 Ripple control line


- 1. Break the pre-punched cable gland out of the terminal box, deburr and insert the supplied membrane grommets.
- 2. Guide the ripple control line in the required length (max. 30 m) through the bushing in the terminal box and secure it with the installed strain relief devices (M = 1.5 Nm).

(1)

(2)

(3)

- Cable routing from above: Select the cable length up to the lower edge of the terminal box.
- Cable routing from below: Select the cable length up to the upper edge of the connection box.
- In the case of flush-mounted cable routing (concealed wall connection), the wall outlet point must be 2 - 10 cm from the underside of the connection box.

5.10.5 Strain relief

Network and control line strain relief

External supply line strain relief

Equalisation potential strain relief

Fig. 19: Strain relief

5.10.6 Mounting the bottom shell

1.

1

2

3

5

2. Hook the lower shell onto the retaining bar of the connection box at an angle of 45° and slowly swing it downwards to the wall support. Make sure that the bottom shell is correctly and completely seated.

Installation

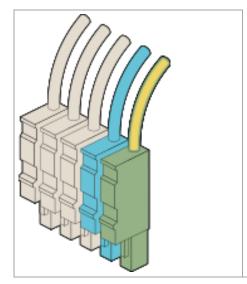

- Preliminarily secure the bottom shell against falling down using the screws supplied (raised head 4 x 12 mm) in mounting holes (2) and (3).
- 4. Unclip the lower lighting strip (6) on the left-hand side so that the fixing hole (1) is accessible.
- Screw in all 5 fastening screws (1 5) completely.
 Observe the correct torque (M = 1.5 Nm).
- 6. Re-engage the lower lighting strip.
- 7. For the optionally supplied profile half-cylinder lock, break out and deburr the pre-punched opening on the underside of the bottom shell before fitting.

Fig. 20: Bottom shell mounting points Illustrations similar

5.10.7 Connecting the internal supply line

1.

Insert the bundled connector of the permanently installed connection line into the terminal block of the power supply line in the terminal box and snap it into place.

Fig. 21: Bundled connector

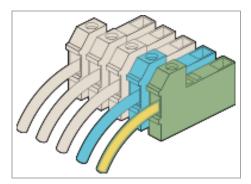


Fig. 22: Terminal block

5.10.8 Connecting the Ethernet cable

ATTENTION

When connecting the LSA terminals, the minimum cross-section of the individual strands of the network cable must not be less than AWG 26. When using a smaller cross-section than AWG 26, it cannot be guaranteed that a connection can be established.

NOTE

As a network cable to be used on the network side, we recommend using a cable with the following designation and article number:

- Designation: HELUKAT 600E S/FTP PVC
- Article number: 802167, S/FTP 4x2xAWG23/1 PVC (S-STP)

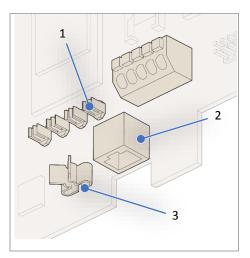
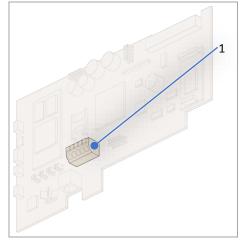


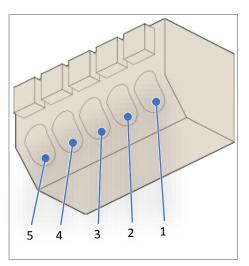
Fig. 23: Ethernet connection

Connection via RJ45 socket:


- Guide the prefabricated network cable or data connection cable through the line channel provided and fix it in place with the cable ties supplied.
- 2. Crimp the RJ45 plug onto the data line or use a prefabricated network cable and connect it to the RJ socket (2).

Connection via LSA terminal:

- 1. Route the data connection line through the intended line channel and fix it with the cable ties supplied.
- Remove the insulation sheath of the data connection line to just below the shield clamp (3) down to the braided shield and press the line into the terminal. Make sure that the shield makes good contact with the terminal.
- 3. Strip the insulation from the data connection cable above the shield clamp.
- 4. Place the wire pairs of the data connection cable on the other side of the cable and the colour coding on the LSA insulation cutting clamp (1) with the attachment tool in accordance with the layout diagram.



5.10.9 Connecting the radio ripple control receiver

- 1. Route the ripple control line through the intended line channel and fix it with the cable ties supplied.
- 2. Connect the ripple control line to the terminal (1).

Fig. 24: Radio connection

Func	Functions with terminal assignment (-> GND)						
(1)	Input 1:	0% charging power					
(2)	Input 2:	30% charging power					
(3)	Input 3:	60% charging power					
(4)	Input 4:	100% charging power					
(5)	GND						

Fig. 25: Radio connection PIN assignment

5.10.10 Inserting SIM card (optional)

Fig. 26: SIM card reader

Insert the SIM card into the SIM card reader (1).

1.

5.10.11 Putting on the housing cover

Installation material and tools

- 2 TORX screws (4 x 16, V2A)
- TORX-TR20 bit
- Torque wrench
- Profile half cylinder lock (option)

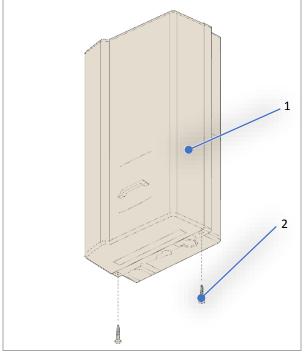


Fig. 27: Housing cover

- (1) Housing cover
- (2) Retaining screw with countersunk head
- Place the housing cover on the upper retaining bar of the bottom shell and close it downwards. Check for correct and tight fit.
- Lightly press on the bottom of the housing cover and secure it on the underside with the screws supplied, ensuring the correct tightening torques (M = 1.5 Nm).

Installation

5.10.12 Attaching the optional safety lock

Locking

- 1. Break out the pre-punched opening in the housing cover and deburr.
- 2. Insert the key into the lock and turn it until the locking lug is flush with the cylinder.
- 3. Press the housing cover lightly at the bottom and insert the lock.
- 4. Turn the key anticlockwise to the "horizontal" position and remove.

Unlocking

- 1. Insert the key, turn it clockwise as far as it will go.
- 2. Press the cover down slightly and remove the lock.

5.10.13 Safety sign



Fig. 28: Underside of housing cover

If necessary, the operator can place a safety sign on the left-hand safety screw.

6 Commissioning

A DANGER

Danger due to electric current

Damage to the charging systems or components may expose live parts. Touching live parts will result in electric shock with serious injury or death.

- Only operate the charging system when it is undamaged.
- In the event of damage, immediately disconnect the charging system from the power supply at the circuit breaker and take suitable safety measures to prevent it from being switched on again.
- Work on electrical components may only be carried out by a qualified electrician.
- Repair work may only be carried out by the customer service.

Commissioning must be carried out by a qualified electrician or by a person trained and instructed in electrical matters. The effectiveness of the protective measures and the correct mechanical and electrical installation must be checked by a qualified electrician.

Commissioning may only be carried out when all necessary internal covers are fitted and the housing is completely closed.

Observe the national legal requirements and regulations during commissioning.

The correct mechanical installation is checked according to the following criteria:

- ☑ The degree of protection of the housing is not reduced or removed
- ☑ The charging system has a good optical condition
- ☑ The specifications for the buried depth of the housing or the specifications for the mounting height were complied with
- The housing has a safe installation condition according to its installation version

The correct electrical installation is checked according to the following criteria:

- \square All electrical components are functional and not damaged
- All display elements of the charging system are functional, visible and can be read
- ☑ The function of any installed residual current circuit breakers can be verified by pressing a button
- ☑ The function of any installed counters is available and readable
- ☑ The function of the charging system can be verified by means of a charging process
- The electrical installation was carried out in compliance with all safety and warning instructions and the listed safety requirements

NOTE

The Annex of this manual contains a test protocol with which the necessary steps can be recorded, written down and archived.

See chapter 13.2 Commissioning and test report for AC charging systems, page 73.

6.1 Testing the charging system

The functionality of the installed charging system can be tested either with a vehicle or with a function simulator.

With the function simulator it is possible to simulate the functions of an electric vehicle and check the functionality of a charging system or charging point.

The figure shows an example of a function simulator for testing an AC charging system or AC charging point.

Another suitable test device must be used for all metrological tests.

Fig. 29: Function simulator

6.2 System start-up

After the charging system has been correctly installed, the system can be started.

- 1. Switch on the power supply.
- 2. Switch on the line and residual current circuit breaker.

The system starts up.

The duration of the system start-up may vary depending on the type of charging system, configuration and product characteristics. The successful completion of the system start-up is indicated by the status LEDs and the display according to the configuration and product scope of the charging system. The average start-up time is approx. 60 seconds.

A successful system start-up is indicated by the LED of the respective charging point temporarily lighting up green. In the case of a charging system with display, the message "Ready for operation" also appears for the respective charging point.

6.3 Configuration of the charging system with Compleo DUCTO

Compleo DUCTO refers to the software used to manage Compleo charging systems using an end device.

Various parameters of the charging system can be set via the configuration interface.

The charging system management information is stored on the charging system itself. By specifying the IP of the charging system in the browser of a suitable end device, such as a notebook, a start page is called up and the connection to the charging system is established. After logging in, an overview of the parameters that can be called up or changed is listed.

To connect to the charging system, the end device used must have an IP address in the same IP address range.

NOTE

The following steps are illustrated using the example of a network configuration with Microsoft Windows 10 and a simulated charging system.

The user must have administrator rights for network configuration.

6.3.1 Creating a network connection

- 1. Connecting charging systems to the network using a network cable.
- 2. Connect your endpoint to your network.
- 3. Call up router settings and identify the IP of the charging system.

NOTE

A connection via the "http" protocol is not possible. In the case of automatic protocol assignment by the browser, this must be changed manually to "https" once.

6.3.2 Calling up the configuration interface

- 1. Identify password on DUCTO sticker.
- 2. Open the local browser and enter the identified IP of the charging system.
- \square The DUCTO start page is displayed.

6.4 DUCTO Guide

More information about DUCTO: https//www.compleocharging.com/fileadmin/Documentcenter/Ducto/Ducto_Guide.pdf

7 Operation

Before using the charging system, read the respective documents that are provided with the charging system or that are necessary for operation.

This chapter explains the general use of the charging system. The charging processes at the charging systems can be started and stopped by different authorisation methods. Depending on the charging system and product scope, the following forms of operation and authorisation are possible:

Free charging:

With the "Free charging" method, a charging process is started or stopped at a charging system without special authorisation. The charging process is started as soon as a charging cable has been connected to the charging system and/or the vehicle. The charging process can only be terminated at the vehicle.

RFID:

With the "RFID" method, a charging process is started or stopped at a charging system using a card or chip. The charging process is started as soon as authorisation has been successfully completed and a charging cable has been connected to the charging system and/or the vehicle.

Giro-e:

With the "Giro-e" method, a charging process is started on a charging system by means of a Giro card and then confirmed or terminated. The charging process is started as soon as authorisation has been successfully completed and a charging cable has been connected to the vehicle.

Remote authorisation:

With the "remote authorisation" method, a charging process is started or stopped at a charging system using an app or a web interface. Depending on the authorisation type and provider, registration may be necessary. The charging process is started as soon as the charging system, charging point and tariff have been selected. The display complying with weights and measures regulations shows an ID number assigned to the charging process. Depending on the provider, billing may be via PayPal or invoice (different payment methods are possible). The charging process is started as soon as a charging cable has been connected to the charging system and/or the vehicle.

Information on which app is necessary and how to operate the app should be obtained from the operator of the charging system.

7.1 Charging process

The Compleo SOLO charging system is produced in different versions. Depending on the configuration of the charging system, the type of charger interfaces and the procedure for starting a charging process differ.

During a charging process, the plug is locked in the vehicle.

If a ventilation function is requested from the vehicle, the charging system interrupts the charging process.

The charging process stops automatically after the existing authorisation method has been successfully executed.

This is followed by brief instructions on how to start and end a charging process. The brief instructions are divided into variants and differ depending on the type of charger interface and operating method.

A DANGER

Danger due to electric current

Damage to the charging systems or components may expose live parts.

Touching live parts will result in electric shock with serious injury or death.

- Only operate the charging system when it is undamaged.
- In the event of damage, immediately disconnect the charging system from the power supply at the circuit breaker and take suitable safety measures to prevent it from being switched on again.
- Work on electrical components may only be carried out by a qualified electrician.
- Repair work may only be carried out by the customer service.

ΝΟΤΕ

Pause the charging process for a short time

The charging system has a function for optimising self-consumption in the event of PV surplus.

This process is controlled by the neoom energy management system (NTUITY).

For a two-phase or three-phase charging vehicle and the available surplus PV power transmitted by the energy management system, this allows switching between charging on one phase and charging on three phases.

If the surplus exceeds the maximum charging power of the vehicle, the resulting surplus is fed into the grid.

To maintain communication between the charging system and the vehicle, the charging process is paused for a short time during this change and then restarted automatically.

7.2 Charging the vehicle

6.3 Configuration of the charging system with Compleo DUCTO, page 49

7.2.1 Authorisation

Remote authorisation:

- 1. Download and install the app for the operator's smartphone or tablet.
- Follow the instructions of the app for the authorisation process.
 LED lights up "green" when authorisation is successful.
- 3. Follow the instructions on the display.

7.2.2 Charging process with type 2 socket

		1.	The charging system indicates the standby state.
\bigcirc	\bigcirc	•	LED "grey": Authorisation must be given.
		•	LED "green": A charging process can be started.
O			Plug in the charging cable in the socket of the charging system.
		3.	Insert the charging plug into the vehicle's socket.
		4.	LED changes from "green" to "blue".
		•	The charging process has started.

7.2.3 Charging process with type 2 plug

		1. •	The charging system indicates the standby state. LED "grey": Authorisation must be given. LED "green": A charging process can be started.
T			Insert the charging plug into the vehicle's socket.
	~	3. •	LED changes from "green" to "blue". The charging process has started.

7.3 Ending the charging process

7.3.1 Authorisation

Remote authorisation:

1. The display indicates the charging process:

"Type 2 - Charged: XXX - Charging duration: XXX - Charge".

2. Follow the instructions of the app or web interface for finishing the charging process.

7.3.2 Ending charging with type 2 socket

			LED changes from "blue" to "green". The charging process has ended.
		2. •	LED "green": Ready for plug removal.
		3. 4.	Pull the charging plug out of the vehicle's socket. Pull out the charging cable from the socket of the charging system.
		5. • •	The charging system changes to the standby state. LED "grey": Authorisation must be given. LED "green": A charging process can be started.

7.3.3 Ending charging with type 2 plug

			LED changes from "blue" to "green". The charging process has ended.
		2. •	LED "green": Ready for plug removal.
ſ			Pull the charging plug out of the vehicle's socket.
		4. •	The charging system changes to the standby state. LED "grey": Authorisation must be given. LED "green": A charging process can be started.
$\overline{\mathbf{O}}$		5.	Insert the charging plug into the holder of the charging system.

7.4 Operating Signals and Displays

7.4.1 Charging state display

The following charging state display explains the colour states and the possible colour changes of a charging system with status LEDs:

Charging state display: LED colour state				
	LED: "grey"	1	The charging system indicates the standby state.Authorisation can be carried out.	
	LED: "green"	2	The charging system indicates readiness for operation.A charging process can be started.	
	LED: "blue"	3	The charging system indicates a charging process.The charging process can be maintained or finished.	

Charging sta	Charging state display: LED colour change				
	LED: "grey-green"	4	The charging system indicates an authorisation process.		
	LED: "green-grey"	5	The charging system indicates an unsuccessful authorisation.		
	LED: "green-blue"	6	The charging system indicates the start of a charging process.		
	LED: "blue-grey"	7	The charging system indicates a voltage drop after starting a charging process.		
	LED: "blue-green"	8	The charging system indicates an unsuccessful authorisation.		

8.1 Residual current circuit breaker (RCCB), page 57

7.4.2 Acoustic signals

Acoustic signals							
1 x short	Sounds when the RFID card is presented and indicates "Card read".						
	This signal requires user interaction:						
2 x short	- Present card for authorisation						
2 X SHOLL	or						
	Plug the charging cable into the charging system and car						
1 x long	Authorisation timeout: Sounds if user interaction has not occurred within a certain time.						
2 y long	The charging system is in an error state.						
2 x long	- If there is a display, note the error message.						

In the following table the possible acoustic signals are listed and explained:

8 Malfunctions

8.1 Residual current circuit breaker (RCCB)

In the event of a residual current, the residual current circuit breaker trips and the charging system is switched off.

To switch on again, proceed as follows:

- 1. Eliminate the cause of the error.
- 2. Activate the residual current circuit breaker by pushing up the locking slide on the side of the housing.

The system starts up.

8.2 Circuit breaker (MCB)

In the event of an overcurrent, the affected circuit breaker trips and the charging system is switched off.

To switch on again, proceed as follows:

- 1. Eliminate the cause of the error.
- 2. Reactivate the circuit breaker at the sub-distribution.

The system starts up.

9 Error display and measures

The charging system displays an error code on the display in case of errors.

If several errors occur at the same time or in combination, the respective error codes are shown one after the other on the display.

Basically, a distinction is made between ErrorStatus and ErrorEvents.

- An ErrorStatus is an error that occurs and persists until it is corrected.
- An ErrorEvent is an error event that occurs once and then again.

NOTE

For charging systems that are not equipped with a display, a connection via a backend must exist for error detection.

Column name	Explanation
Title	String sent to the backend when the charging station is in online mode.
Code	Symbol that is shown individually or in combination with other symbols on the charging station display depending on the status.
Troubleshooting advice	Description of the fault and troubleshooting advice.

9.1 About this advices

9.1.1 Field of application

Firmware 5.X and 6.X (SOLO, DUO, CITO)

9.2 OCPP 1.6

Title	Code	Troubleshooting advice
GroundFailure	В	The RCD, the circuit breaker or the 6mA sensor of the charging point has tripped. Inspection by qualified electrician required.
InternalError	D	Error in internal hardware or software component. Inspection by qualified electrician required.
OverVoltage	E	The voltage has risen above an acceptable level. Inspection by qualified electrician required.
PowerMeterFailure	F	Error when reading the meter. Check SAM or meter for function and report fault.
PowerSwitchFailure	G	Contactor fault. Inspection by qualified electrician required.

UnderVoltage	I	The voltage has dropped below an acceptable level. Inspection by qualified electrician required.
ConnectorLockFailure	-	Error when locking or unlocking the plug. It must be checked whether the plug is connected correctly.
OverCurrentFailure	-	The vehicle has drawn more current than specified for an extended period of time.

Not used: EVCommunicationError, HighTemperature, ReaderFailure, WeakSignal

Error display and measures

9.3 Compleo-specific

Title	Code	Troubleshooting advice
IsolationWarning	К	Insulation problems occurred before or during a charging process. Inspection by qualified electrician required.
IsolationError	L	Insulation problems occurred before or during a charging process. Inspection by qualified electrician required.
DoorOpen	М	The door contact signals that the door has been opened. Close door. If this condition is permanent, a test by a qualified electrician is required.
DoorClosed	N	The door contact signals that the door has been closed. No action required.
Inoperative	0	The charging point is not available because a resource, such as the power module, is occupied by another charging point. Inspection by qualified electrician required.
FuseError	Р	A circuit breaker has tripped. Inspection by qualified electrician required.
TemperatureSensorMissing	Q	The temperature sensor does not provide any values. Inspection by qualified electrician required.
AutomaticRcdTestRunning	т	Automatic test of the RCD is running. No action required.
RCSensorTestRunning	W	Test of the 6mA sensor test in progress. No action required.

٦

samTransactionMemoryFull	4	SAM has no more free memory for new charging processes. SAM must be replaced by an authorized electrician.
samEVSEIDMemoryFull	5	SAM has no more free memory for new configuration parameters. SAM must be replaced by an authorized electrician.
samFirmwareCorrupted	6	The SAM firmware checksum check has failed. If this condition is permanent, SAM must be replaced by an authorized electrician.
samNoTouchControllerComm	7	The connection to the SAM keys is disturbed. Check by qualified electrician required. If this condition is permanent, SAM must be replaced by an authorized electrician.
samNotInitialized	8	SAM could not be initialized. If this condition is permanent, SAM must be replaced by an authorized electrician.
samInternalError	9	SAM reports an internal error. SAM must be replaced by an authorized electrician.
UnlockPlugFailure	а	The plug could not be unlocked. The locking unit of the charging point must be checked by trained personnel and replaced if necessary.
OutletCloseError	b	The sliding lid could not be closed. The locking unit of the sliding lid must be checked by trained personnel and replaced if necessary.
LPCCommunicationError	с	The communication between the charging point controller and the charging station controller is disturbed. The corresponding connection must be checked by trained personnel and replaced if necessary.
CableError	d	A non-approved charging cable has been detected. A different charging cable must be used.
RCSensorTestError	е	The test of the 6mA sensor has failed. Inspection by qualified electrician required.
PowerMonitoringError	f	The charge point controller has detected a power failure. Inspection by a qualified electrician is required.
ADCError	g	The charge point controller has detected an ADC error. Inspection by qualified electrician required.

Error display and measures

ShortCircuitError	h	The charge point controller has detected a short circuit between CP and PE. Inspection by qualified electrician required.
LPCOverVoltageError	i	The charge point controller has detected an overvoltage. Inspection by qualified electrician required.
LPCHighTemperatureError	j	The charging point controller has detected a temperature that is too high. Inspection by qualified electrician required.
LPCSelftestError	k	The self-test of the charging point controller has failed. Inspection by qualified electrician required.
AutomaticRcdTestFailed	m	The automatic test of the RCD has failed. Inspection by qualified electrician required.
LPCTemperatureSensorError	n	The charging point controller reports a temperature sensor error. Replacement by qualified electrician required.
CurrentSensorFailure	0	The charging point controller reports a current sensor error. Inspection by qualified electrician required.
PolarityProtectionError	р	The charging point controller reports that the phases are connected with reversed polarity. Inspection by qualified electrician required.
samCompensationsParameters Mismatch	q	Compensation parameters in SAM and in meter do not match. Inspection by authorized electrician required.
samCompensationTariff Mismatch	r	Selected tariff in the meter does not correspond to that which the meter reports as active. Inspection by authorized electrician required.
samMeterIdMismatch	S	The SML ID of the connected meter does not correspond to that of the meter connected to the SAM. Inspection by authorized electrician required.
AutomaticRcdTestSuccess	-	Automatic test of the RCD successful. No action required.
AutomaticRcdTestTripFailure	-	Automatic test of the residual current circuit breaker failed. Inspection by qualified electrician required.
AutomaticRcdReset ContactorTestFailed	-	The cause of the failed RCD test has not been eliminated. Inspection by qualified electrician required.

AutomaticRcdResetSuccess	-	The cause of the failed test of the RCD has been eliminated. No action required.
OutletOpenError	-	The socket could not be opened. Inspection by qualified electrician required.
RCSensorErrorDuringCharge	-	The 6mA sensor has tripped during a charging process. Inspection by qualified electrician required if the error occurs frequently.

10 Maintenance

Careful and regular maintenance ensures that the functional condition of the charging system is maintained. Only a regularly checked and maintained charging system is able to guarantee maximum availability and reliable charging processes.

The maintenance intervals depend on the prevailing operating conditions, such as the frequency of use and environmental influences such as the degree of contamination.

We recommend a cyclically recurring inspection according to the maintenance plan. In special cases, the cycles can be shorter.

A DANGER

Danger due to electric current

Touching live parts will result in electric shock with serious injury or death.

- Work on electrical components may only be carried out by a qualified electrician and in accordance with electrical engineering rules.
- Ensure they are de-energised and take suitable protective measures.

A WARNING

Danger due to improper maintenance

Improper performance of work can lead to serious injuries and damage to property.

- Work may only be carried out by trained specialist personnel.
- Meet all safety requirements before maintenance.

10.1 Maintenance plan

Interval	Component/location	Maintenance work
Every 6 months	Residual current circuit breaker	Self-test cycle adjustable via DUCTO (see chapter fehlender Linktext, page fehlender Linktext).
		Check with simulation device if RCD is not installed in the charging system.
Yearly	Location	Visual inspection, e.g. for distances to objects (bushes, installations ,etc.), attachment.
	Electrical components	Visual inspection, e.g. cables, lines, screw connections, plugs, RCD, MCB, display, LED, display, surge protection.
		Metrological verification according to test report, see Annex.
		Check for function, e.g. RCD, MCB.
	Mechanical components	Visual inspection, e.g. housing, paint, foils, covers.
		Check for function, e.g. sliding cover; parking position.
	Charging system	Check for function, e.g. start and stop of a charging process at all charger interfaces.
As required	Charging system	Clean the outer casing of the housing.

10.1.1 Automatic RCD test

At the preset time, the RCD is automatically tripped by a fault current generated by the DUCTO control. The letter "T" is shown on the display of the correspondingly equipped charging system (see chapter --- fehlender Linktext ---).

By pushing up the sliding cover, the RCD is switched on again and the test is completed.

NOTE

If the RCD test is unsuccessful, the letter "U" appears on the display (see chapter).

• Customer service must be notified.

NOTE

A test report is included in the Annex of this manual. See chapter 13.2 Commissioning and test report for AC charging systems, page 73.

10.2 Maintenance and repair

Danger due to electric current

Damage to the charging systems or components may expose live parts. Touching live parts will result in electric shock with serious injury or death.

- Only operate the charging system when it is undamaged.
- In the event of damage, immediately disconnect the charging system from the power supply at the circuit breaker and take suitable safety measures to prevent it from being switched on again.
- Work on electrical components may only be carried out by a qualified electrician.
- Repair work may only be carried out by the customer service.

Maintenance and repair work may only be carried out by the manufacturer.

• Replace the charging station if necessary.

10.3 Cleaning

The components inside the charging system need to be cleaned according to the assessment of an expert but this is not always necessary. Any necessary cleaning of the interior must only be carried out after consultation with the operator of the charging system. Cleaning may only be carried out by a properly and professionally instructed person and must never be carried out by a user.

Only materials and dry cleaning agents which are antistatic and do not damage the electrical or mechanical components may be used as cleaning agents for the interior. Only materials and agents that do not attack or damage the surface of the housing or any applied foiling or paintwork should be used as cleaning agents for the external housing. If chemical agents are used during cleaning, the work must be carried out outdoors or, if this is not possible, only in well-ventilated rooms.

A DANGER

Danger due to electric current

Touching live parts will result in electric shock with serious injury or death.

- Only clean the charging system when it is switched off.
- Do not clean the outer housing with water jets, e.g. with a hose or a high-pressure cleaner.
- Do not clean the interior of the charging system with liquid cleaning agents.
- Do not clean any plugs in the charging system.

ATTENTION

Damage to the unit

Environmental influences due to rain, splash water or heavy dust exposure on exposed installation components without an installation cover cause damage to the unit.

• Do not leave the charging station unattended with the installation cover open.

11 Decommissioning, dismantling and disposal

The decommissioning and dismantling of the charging system may only be carried out by a qualified electrician. The national legal requirements and regulations must be observed.

Danger due to electric current

Touching live parts will result in electric shock with serious injury or death.

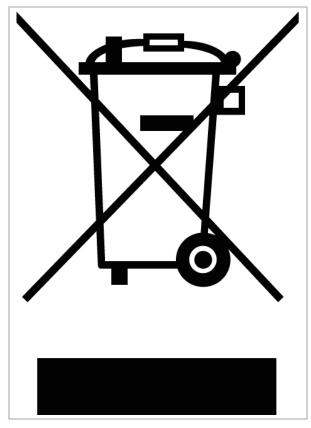
- Work on electrical components may only be carried out by a qualified electrician and in accordance with electrical engineering rules.
- Ensure they are de-energised and take suitable protective measures.
- 1. Finish charging processes properly.
- 2. Disconnect the charging system from the power supply.
 - Activate using the internally installed safety elements such as MCB, RCD and any installed main switch.
 - Release the upstream fuse element of the charging system.

Dismantling may only be carried out after it has been established that no voltage is present and suitable protective measures have been taken.

11.1 Disposal

The unit contains materials that can be recycled. To protect the environment and human health, disposal must be carried out in accordance with the laws of the country and the existing take-back organisations.

- Observe the requirements of the WEEE Directive 2012/19/EU.
- Dispose of the unit accordingly only via the take-back organisation.
- Dispose of dismantled components only via the take-back organisation.


NOTE

Incorrect or negligent disposal causes environmental pollution.

• If you have any questions about environmentally friendly disposal, ask your specialist dealer or the manufacturer for information.

11.1.1 Disposal instructions

The symbol with the crossed-out dustbin indicates that this electrical or electronic appliance must not be disposed of with household waste at the end of its service life. To return the product, contact the manufacturer or dealer.

The separate collection of Waste from Electrical and Electronic Equipment (WEEE) is intended to enable the reuse, recycling or other forms of recovery of WEEE and to avoid negative consequences on the environment and human health from the disposal of hazardous substances that may be contained in the equipment.

12 Index

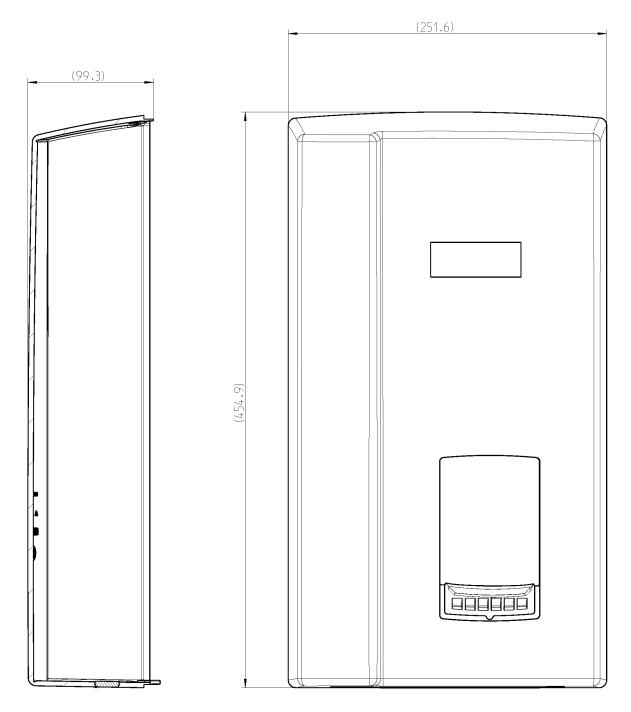
1	

1	
1- or 2-phase connection	39
Α	
Abbreviations	8
Acoustic signals	56
с	
Charging process	51
Charging state display	55
Charging the vehicle	52
Circuit breaker	57
Cleaning	67
Commissioning	47
Commissioning and test report	73
Contact address	7
Conventions of presentation	7
D	
Dangers	12
Data line	40
Decommissioning	68
Design	13
Dismantling	68
Display	55
Disposal	68
Ε	
Electric shock	12
Electrical Installation	23
Electrical voltage	12
Ending the charging process	53
Error display	58
G	
Ground mounting	
Н	
Handling	12
Housing dimensions	72
1	
Installation	21

Installation and connection
Installation work21
Intended use10
Internal supply line 42
L
Location
М
Maintenance64, 66
Maintenance plan65
Malfunctions57
Manufacturer7
MCB57
Mechanical installation21
Misuse10
Mounting the bottom shell
Mounting the terminal box (double-sided pillar)
Mounting the terminal box (single-sided pillar)
0
0
O Operating signals55
0
O Operating signals55 Operation50 P
O Operating signals
O Operating signals55 Operation50 P
O Operating signals

Safety sign	46
Scope of application	6
Series label	15
Signals	56
SIM	
Storage	19
Storage conditions	20
System start-up	48
Т	
Technical specifications	16

Test	48
Transport	19
Transport Inspection	19
U	
Unpacking	25
User	10
W	
Wall mounting	
Warnings	9


Index

Annexes

13 Annexes

13.1 Housing dimensions

13.2 Commissioning and test report for AC charging systems

Commissioning and test report for AC charging systems

Applicable to SOLO

Operator of the system:
Company/name:
Street:
Post code/town:
Telephone number:
Location of the system:

Testing company: Company/name: Street: Post code/town: Telephone number:

Date:

□ Initial commissioning: according to DIN VDE 0100-600 (2017:06)

□ **Periodic inspection:** according to DIN VDE 0105-100 (2015:10)

1 General information

Pre-installation carried out by customer	□yes	□no
Pre-installation documentation available (pre-installation protocol)	□yes	□no

Designation of the test item:						
Serial number:						
Network form:	TT		Π	N-S	□TN-C	□TN-C-S
Local earthing available	□yes	□n	0			
Lightning protection concept	□yes □no		Point out the necessity to the		to the	
recognisable/available at the site				operator	r!	

1.1 Equipment-dependent specifications

Component	Not installed	Serial number	Counter reading in kWh
Charging point counter 1			
Component	Not installed	Type designation	Comments
Overvoltage protection			

Compleo Charging Solutions AG

Version: 2.3 Issue: 16.03.2023

2 Work before initial commissioning

INFO: Cut the cable insulation to length according to the installation instructions (failure to do so may result in a **FIRE HAZARD**)

Check of the cable glands (torque) and tensile test on cables in a de-energised state carried out? Yes \Box No \Box

2.1 Measuring and testing equipment used

Manufacturer	Designation	Serial number	Next calibration

3 Visual inspections

External visual inspection	ОК	NOK	n.a.	Comments
Housing condition				
Contamination				
Display disc counter/SAM				
Display disc controller				
Charging cable AC				Replacement is mandatory in the event of a defect!

Internal visual inspection	ОК	NOK	Comments
Components (meter, SAM,			
control unit, terminals)			
Cabling			
General level of contamination			
Humidity			
Overvoltage protection (if available)			Visual display = green
Covers for active parts			

Compleo Charging Solutions AG	Version:	2.3	
	Issue:	16.03.2023	Page 2 / 4

4 Metrological inspection (to be carried out once a year)

Test		Individual measurements	Limit	value	Chargin g point 1	Comments	
Continuity of conductor	protective	Protective conductor		Low impedance Recommendation : <1Ω		Measurement from charging cable/charging socket to charging station feed-in	
Main equipor		Earth	Low impe	edance		Recommendation: <1Ω:	
bonding rail (Insulation res	ding rail (if present) connection			<u> </u>	MΩ	For charging systems with two	
without cons		L1-PE L2-PE	-	≥1.0MΩ		charging points, disconnect one charging point by switching off one	
supply point o	f charging	L2-PE L3-PE	-		ΜΩ	MCB and measure the other side before starting the measurement,	
	rging plug, with		-		ΜΩ	then repeat this procedure on the other side.	
fixed cable or coupling)	venicie	N-PE L1-L2	≥1.0MΩ	<u> </u>	ΜΩ	VDE 0100-600 Section 6.4.3.3 Reduce the measuring voltage to	
			-	2	ΜΩ	250V when testing the active	
		L2-L3	-		ΜΩ	conductors with each other and repeat the test if Riso <1MOhm	
		L1-L3	-		ΜΩ		
		L1-N	-		ΜΩ		
		L2-N	-		ΜΩ		
LP wiring to clock	wise retating field	L3-N			MΩ		
			230V +/-10%				
Mains voltag	e	L1-N			V		
		L2-N			V		
		L3-N			V		
		L1-L2	400V		V		
		L2-L3	+/-10%		V		
		L1-L3			V		
Rel. voltage o	drop (calc. meas.)	□ок □пок	Max. 5% u supply poi				
Error loop	TN network	L1-PE	$Z_S \le \frac{U_0}{I_a}$		□OK □ NOK	VDE 0100-600 Section 6.4.3.7.1 Note 1:	
impedance		L2-PE	U_0 = nominal AC voltage I_a = trip current			If residual current devices (RCDs) with IΔN ≤ 500 mA are used as	
Zs		L3-PE	(MCB/RCD)			shutdown devices, measurement of the fault loop impedance is generally	
	TT network	L1-PE	$Z_c < \frac{50V}{2}$		□ок □	not required.	
		L2-PE	$Z_{S} \leq \frac{30V}{I_{\Delta N}}$ $I\Delta N = rated$				
		L3-PE	_ current in A	of the RCD			
		N-PE	-				
Residual current	AC Residual current,	Trip current	> 12 mA	≤30mA	NOK mA		
device RCD	sinusoidal	Trip time 1x I _N	<300ms		ms		
		Trip time 5x I _N	<40ms		ms		
	DC (6mA sensor = pos. and neg. edge RCD type B = rising	Trip current I _{∆N} =30mA	≤6mA for 6mA sensor ≤60mA for RCD	Pos. flank Neg. flank	mA		
	DC residual current)	Trip time	type B <10s for 6mA	Pos. flank	s		

Annexes

	< 0.3s fo type B	Neg. flank	S	
--	---------------------	---------------	---	--

5 Functional tests

Test	Charging point		Comments
	ОК	NOK	
Authorisation via RFiD			
Charging process AC			
Charging plug lock			
Sliding cover			
SAM buttons (if present)			

6 Result:

Test results	Yes	No
All tests were carried out		
Defects present		
Defect eliminated		
Inspection tag attached		

Comments:
Next test date on:
Place, date:
Tester: First and last name in block capitals
Signature:

Compleo Charging Solutions AG

Version: 2.3 Issue: 16.03.2023

Page 4 / 4

Notes

The power to move

Compleo Charging Solutions AG Ezzestraße 8 44379 Dortmund Deutschland

> info@compleo-cs.com compleo-charging.com

©2023 Compleo. All rights reserved.

This document may not be copied in whole or in part without written permission. All illustrations in this document serve as examples only and may differ from the delivered product. All information in this document is subject to change without notice and does not represent a commitment on the part of the manufacturer.